Volver a Guía
Ir al curso
CURSO RELACIONADO
Análisis Matemático 66
2024
GUTIERREZ (ÚNICA)
¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰
Ir al curso
ANÁLISIS MATEMÁTICO 66 CBC
CÁTEDRA GUTIERREZ (ÚNICA)
3.
Calcule el polinomio de Taylor de las siguientes funciones hasta el orden indicado en el punto dado
e) $f(x)=\ln x$ orden 4 $x_{0}=1$
e) $f(x)=\ln x$ orden 4 $x_{0}=1$
Respuesta
Nos piden encontrar el polinomio de Taylor de orden $4$ centrado en $x=1$ de la función $f(x)=\ln (x)$
Reportar problema
Sabemos que el polinomio de Taylor que estamos buscando tiene esta estructura:
$ p(x) = f(1) + f'(1)(x - 1) + \frac{f''(1)}{2!}(x - 1)^2 + \frac{f'''(1)}{3!}(x - 1)^3 + \frac{f^{(4)}(1)}{4!}(x - 1)^4 $
Vamos entonces a derivar $f$ y evaluar sus derivadas en $x=1$ para completar nuestra respuesta:
$ f(x) = \ln(x) $
$ f(1) = 0$
$ f'(x) = \frac{1}{x} $
$ f'(1) = 1 $
$ f''(x) = -\frac{1}{x^2} $
$ f''(1) = -1 $
$ f'''(x) = \frac{2}{x^3} $
$ f'''(1) = 2 $
$ f^{(4)}(x) = -\frac{6}{x^4} $
$ f^{(4)}(1) = -6 $
¡Listo! Reemplazamos los valores obtenidos en el esqueleto de nuestro polinomio de Taylor:
$ p(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 - \frac{6}{24}(x - 1)^4 $
Ahí nos quedó algo que podemos simplificar:
$ p(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 - \frac{1}{4}(x - 1)^4 $
Y este es el polinomio que buscábamos :)